This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Highly Reactive Sulfinates. II¹. The Solvolysis and Rearrangement of Benzyl Trifluoromethanesulfinates

To cite this Article (1976) 'Highly Reactive Sulfinates. II 1 . The Solvolysis and Rearrangement of Benzyl Trifluoromethanesulfinates', Phosphorus, Sulfur, and Silicon and the Related Elements, 2: 1, 213 - 215

To link to this Article: DOI: 10.1080/03086647608078952 URL: http://dx.doi.org/10.1080/03086647608078952

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Communications to the Editor

Highly Reactive Sulfinates. II¹. The Solvolysis and Rearrangement of Benzyl Trifluoromethanesulfinates

Sir:

In recent years considerable attention has been focused on the high reactivity of trifluoromethane-sulfonates (triflates) in various substitution reactions. It is well known² that under solvolytic conditions these esters are more reactive than the corresponding tosylates or halides by a factor of 10^5-10^7 . The triflate anion has therefore been considered as the most effective leaving group³. In accord with this observation, alkyl triflates have been reported as the most powerful alkylating agents of their type,⁴ while vinyl triflates have been of immense value in the generation and study of the unstable vinylic cations⁵ and more recently also in the generation of vinylidene carbenes.⁶

In view of the significant role played by triflates in mechanistic studies, and as a consequence of our interest in the chemistry of sulfinates in general⁷ and trihalomethanesulfinates in particular, we have undertaken an investigation on the reactivity of trifluoromethanesulfinates (triflinates). Although the preparation of several simple alkyl triflinates has recently been described in the literature, and although the

- For part I see S. Braverman and Y. Duar, Tetrahedron Lett., 343 (1975).
- R. L. Hansen, J. Org. Chem., 29, 4322 (1965); A. Streitwieser, Jr., C. L. Wilkins, and E. Kiehlmann, J. Am. Chem. Soc., 90, 1598 (1968); T. M. Su, W. F. Sliwinsky, and P. v. R. Schleyer, ibid., 91, 5386 (1969); S. A. Sherrod, R. G. Bergman, G. L. Gleicher, and D. G. Moris, ibid., 94, 4615 (1972); P. J. Stang and R. H. Summerville, ibid., 91, 4600 (1969).
- Recently, the "nonaflate" anion was reported as a better leaving group than the triflate anion by a factor of about
 L. R. Subramanian and M. Hanack, Chem. Ber., 105, 1465 (1972).
- J. Burdon and V. C. R. McLoughlin, Tetrahedron, 21, 1 (1965).
- For reviews see M. Hanack, Accounts Chem. Res., 3, 209 (1972); G. Modena and U. Tonellato, Adv. Phys. Org. Chem., 9, 185 (1971); P. J. Stang, Prog. Phys. Org. Chem., 10, 205 (1973); see also, R. H. Summerville and P. v. R. Schleyer, J. Am. Chem. Soc., 96, 1110 (1974).
- P. J. Stang, M. G. Mangum, D. P. Fox, and P. Haak, J. Am. Chem. Soc., 96, 4562 (1974).
- e.g. (a) S. Braverman and S. Steiner, Israel J. Chem., 5, 267 (1967), (b) S. Braverman, Int. J. Sulfur Chem. Part C, 6, 149 (1971), (c) S. Braverman and T. Globerman, Tetrahedron, 30, 3873 (1974), (d) S. Braverman and H. Mechoulam, ibid., 30, 3883 (1974).
- This term mentioned in ref. 10a for the CF₃SO₂ anion is here adopted for the ester.
- D. T. Sauer and J. M. Shreeve, Inorg. Chem., 10, 358 (1971).

ability of the triflinate anion as an effective leaving group has been suggested by the study of Hendrickson and coworkers on triflamides, ¹⁰ the chemical behavior of such esters has apparently never been reported. We have synthesized benzyl, p-chloro, and p-methybenzyl triflinates by a very convenient method, oxidation of the appropriate sulfenate ester ¹¹ with m-chloroperbenzoic acid in methylene chloride, at 0° (eq 1).

R = H, CI, CH3

All the esters prepared 12 were obtained in almost quantitative yield. It is interesting to note that further oxidation to the sulfonate does not take place even in the presence of an excess of oxidizing agent at room temperature. This contrasts with the observation that arenesulfinates are easily oxidized to sulfonates at 0°, a reaction used for the preparation of highly active arenesulfonates, 13 as well as with reports that benzyl trifluoro-14 and trichloromethyl 15 sulfides can be oxidized to the corresponding sulfones. It is also of interest that the p-methoxybenzyl (p-anisyl) triflinate could not be obtained by this method. Rearrangement to the corresponding sulfone took place under the normal reaction conditions. These observations are analogous to those reported for the trichloromethanesulfinates.1

 ⁽a) J. B. Hendrickson, R. Bergeron, A. Giga, and
 D. Sternbach, J. Am. Chem. Soc., 95, 3412 (1973),
 (b) J. B. Hendrickson and R. Bergeron, Tetrahedron Lett., 4607 (1973).

^{11.} S. Braverman and H. Manor, following communication.

Satisfactory ir, ¹H-nmr, ms spectra and elemental analyses were obtained for all new compounds.

R. M. Coates and J. P. Chen, Tetrahedron Lett., 2705 (1969).

V. V. Orda, L. M. Yagupol'skii, V. F. Bystrov, and
 A. U. Stepanyants, Zh. Obshch. Khim., 35, 1628 (1965);
 C.A., 63, 17861e (1965).

L. A. Paquette and L. S. Wittenbrook, J. Am. Chem. Soc., 90, 6790 (1968).

In order to test the reactivity of triflinates we have investigated their behavior under solvolytic conditions. We have found that all the benzyl esters prepared undergo facile ethanolysis with exclusive C—O bond fission as evidenced by formation of the corresponding ethyl ether and sulfinic acid (eq 2).

In sharp contrast with these results, benzyl 2,6-dimethylbenzenesulfinate has been reported 7a to undergo ethanolysis by complete S-O bond cleavage and at a much slower rate even at 90° ($k = 2 \times 10^{-7} \text{ sec}^{-1}$). A comparison between the rate of ethanolysis of this ester with that of the corresponding triflinate (see Table), taking into account the differences in bond cleavage and temperature, indicates that the reactivity of the triflinate is higher by some six powers of ten. This factor is similar to that found for the triflate/tosylate ratio.2 Furthermore, the reactivity of benzyl triflinates, somewhat surpassed by the analogous trichloromethanesulfinates is of the same order of magnitude as that of the corresponding tosylates, 16 as can be seen from the data shown in the Table.

TABLE I

Rate Constants for the Solvolysis^a of Benzyl Trihalomethanesulfinates at 32°

Benzyl Ester	Solvent	10 ⁵ k, sec ⁻¹		
		p-CI	р-Н	p-Me
Triflinate	EtOH	0.92	1.04	6.56
	HOeM	1.84	3.21	23.71
	80% EtOH	2.67	4.34	88.19
Trichlinate ^b	EtOH	1.27	3.05	12.53
	MeOH		7.14	42.50
	80% EtOH	_	9.25	121.30
Tosylate ^C	EtOH		5.33	
	MeOH		16.70	
	80% EtOH		32.40	

 $[\]it a$ In the presence of 2,6-lutidine, acting as buffer.

The unusual high reactivity of the triflinates may be attributed to the high acid strength of CF₃SO₂H, and the consequent high leaving group ability of its anion. On the other hand, the lack of rearrangement to sulfone during solvolysis as normally observed with arenesulfinates^{7a,c} may reflect the reduced nucleophilicity of the sulfur atom in this case. The same explanation may also be advanced for the lack of triflinate to triflate oxidation.

Further evidence for the mechanism of solvolysis was obtained from a kinetic study of the reaction. A summary of first-order rate constants for the solvolysis of benzyl triflinates in various solvents is presented in the Table. In order to analyze the kinetic results with respect to the substituent and solvent effects, we have examined the Hammett and Winstein correlations. The rates of solvolysis in methanol and 80% ethanol-water correlate quite well with σ . Although the size of $\rho = -2.69$ for the first solvent is smaller than usually observed with ionizing systems, it compares favorably with the value recorded for the solvolysis of other benzylic systems, such as chlorides and sulfonates.¹⁷ On the other hand, the size of $\rho = -3.76$, obtained for 80% ethanol is suggestive of an ionization mechanism.

Good linear correlations were found when $\log k$ for solvolysis of p-chloro- and p-methylbenzyl triflinates, using the solvents mentioned in the Table at 32°, were plotted against log k for ionization of p-methoxyneophyl tosylate¹⁸ in the same solvents at 25°. The slope (a value) of the straight line of 0.52 for the p-chlorobenzyl ester indicates a relatively low sensitivity to variation in solvent ionizing power. It is therefore suggested that this ester, as well as the unsubstituted one react by both S_N1 and S_N2 mechanisms. On the other hand a slope of 1.2 was obtained for the p-methylbenzyl triflinate, similar to the values reported for other ionizing systems. 1, 7a, c, 19 Consequently it is suggested that in this case, capable of developing a more stable carbonium ion, complete ionization takes place.

Inspection of the data shown in the Table indicates a close resemblance between the reactivity of the trifluoro- and trichloromethanesulfinates. Although it has been stated that trifluoroacetic acid is a stronger acid than trichloroacetic acid, the given pK_a values, 0.3 and 0.08 respectively point to the

b Trichloromethanesulfinate. Data taken from ref. 1.

[¢] At 25°. Data taken from ref. 16.

S. Winstein, E. Grunwald, and H. W. Jones, J. Am. Chem. Soc., 73, 2700 (1951).

R. W. Alder, R. Baker, and J. M. Brown in "Mechanism in Organic Chemistry", Wiley, London, 1971, p. 36;
 G. S. Hammond, C. E. Reeder, F. T. Fang, and J. M. Kochi, J. Am. Chem. Soc., 80, 568 (1958).

S. G. Smith, A. H. Fainberg, and S. Winstein, J. Am. Chem. Soc., 83, 618 (1961).

S. Braverman and B. Sredni, *Tetrahedron*, 30, 2379 (1974);
 S. Braverman and D. Reisman, *ibid.*, 30, 3891 (1974).

L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Wiley, New York, N.Y., 1967, pp. 1194, 1219.

reverse. However, other available data²¹ show that CF₃CO₂H is indeed several times stronger than CCl₃CO₂H, while the substituent constants of CF₃ and CCl₃ and their acid strengthening effects are almost identical. Assuming that this relation applies also for trihalomethanesulfinic acids, the observed resemblance between triflinates and trichlinates seems reasonable. In view of these findings one would predict that the practically unknown trichloromethanesulfonates may serve as good substitutes for the triflates. On the other hand, as judged by the results of a comparison between trifluoro- and trichloromethanesulfenates,¹¹ this prediction may not be exactly correct.

Finally, it has been reported²² that no rearrangement of benzyl p-toluenesulfinate to benzyl p-tolyl sulfone takes place on heating the ester in a mixture of acetic and hydrochloric acids or in a homogeneous

state. Similarly, on heating a solution of benzyl benzenesulfinate in formamide (dielectric constant 109) during 70 hr on a steam bath, the ester rearranged to benzyl phenyl sulfone in low yield. In contrast, we have found that benzyl triflinate rearranged to benzyl trifluoromethyl sulfone 12,14 on heating in acetonitrile at 100° in the presence of 2,6-lutidine ($t\frac{1}{2} \sim 3.5$ hr). The p-chloro- and p-methyl-benzyl triflinates also rearranged to the corresponding sulfones under similar condition. The rearrangement to sulfone which clearly involves C—O bond cleavage is further evidence for the high reactivity of the triflinates. The rearrangement of the p-anisyl ester at 0° in CH₂Cl₂ may be indicative of an ionization mechanism for the reaction.

Acknowledgment

One of us (H.M.) thanks the National Council for Research and Development for the award of a scholarship.

S. Braverman* and H. Manor Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel Received June 16, 1975

The Reactivity of Trifluoro- versus Trichloromethanesulfenates

Sir:

Recently, we have reported that benzyl trichloromethanesulfenates show unique reactivity with respect to both solvolysis and rearrangement. For example, while p-anisyl trichloromethanesulfenate readily undergoes ethanolysis at room temperature with complete C—O bond cleavage by an ionization mechanism, the ethanolysis of the corresponding 2-nitrobenzenesulfenate proceeds at a similar rate only at 100°, involves exclusive S—O bond fission and may be explained by an S_N2-type mechanism. Similarly, while the rearrangement of allyl^{2a} and propargyl^{2b} trichloromethanesulfenates to sulfoxides generally parallels that of the corresponding arenesulfenates, ³

and proceeds by a concerted [2,3]-sigmatropic mechanism, the rearrangement of benzyl trichloromethane-sulfenates,⁴ unlike that of benzyl arenesulfenates,⁵ proceeds by an ionization mechanism.

It is well known⁶ that under solvolytic conditions trifluoromethanesulfonates (triflates) are more reactive than the corresponding tosylates or halides by a factor of 10⁵-10⁷. The extremely high reactivity of these esters has found important synthetic⁷ and mechanistic applications, especially in the generation and

G. Kortüm, W. Vogel, and K. Andrusson, "Dissociation Constants of Organic Acids in Aqueous Solutions", IUPAC, Butterworths, London, 1961, p. 295; G. B. Barlin and D. D. Perrin in "Elucidation of Organic Structures by Physical Methods" Part I, 2nd Edition, Eds. K. W. Bentley and G. W. Kirby, Ch. IX. Wiley-Interscience, New York, N.Y., 1972, pp. 615, 638, 653.

A. H. Wragg, J. S. McFadyen, and T. S. Stevens, J. Chem. Soc., 3603 (1958).

S. Braverman and D. Reisman, Tetrahedron Lett., 3563, (1973); Tetrahedron, 30, 3891 (1974).

 ⁽a) S. Braverman and Y. Stabinsky, Chem. Comm., 270 (1967); Israel J. Chem., 5, 71 (1967);
 (b) Ibid, 5, 125 (1967).

R. Tang and K. Mislow, J. Amer. Chem. Soc., 92, 2100 (1970) and previous references cited therein; G. Smith and C. J. M. Stirling, J. Chem. Soc. (C) 1530 (1971).

S. Braverman and B. Sredni, Tetrahedron, 30, 2379 (1974).

D. R. Rayner, E. G. Miller, P. Bickart, A. J. Gordon, and K. Mislow, J. Amer. Chem. Soc., 88, 3138 (1966);
 E. G. Miller, D. R. Rayner, H. J. Thomas, and K. Mislow, Ibid., 90, 4861 (1968).

R. L. Hansen, J. Org. Chem., 29, 4322 (1965); A. Streitwiser Jr., C. L. Wilkins, and E. Kiehlmann, J. Amer. Chem. Soc., 90, 1598 (1968); T. M. Su, W. F. Sliwinsky, and P. v. R. Schleyer, ibid, 91, 5386 (1969); S. A. Sherrod, R. G. Bergman, G. L. Gleicher, and D. G. Moris, Ibid., 94, 4615 (1972).

J. Burdon and V. C. R. McLoughlin, Tetrahedron, 21, 1 (1965).